Ламповый звук: миф или реальность? Мифы вокруг ламповых унч Правда и вымысел о ламповых усилителях

В настоящее время ламповая техника вновь становится популярной. Это вызвано не только особенностями в ее звучании, но и некоторыми эстетическими особенностями. В связи с этим появляется много разных суждений о концепции конструирования ламповых устройств. Многие из них основываются на вполне справедливых выводах, но некоторые чистой воды вымысел и основываются на абсолютно нелепых суждениях. Попробуем разобраться и, как принято в электронной технике, пойдем с «хвоста».

1. Кенотроны в питании

Многие считают, что ламповый УМЗЧ лучше питать от выпрямителей на кенотронах, мотивируя это следующими доводами:

* У выпрямителей на кенотронах больше выходное сопротивление, нежели у полупроводниковых. Лампы «чувствуют себя комфортнее в однородной ламповой среде».

Выходное сопротивление кенотрона действительно выше, но тут стоит вспомнить закон Ома для полной цепи; из которого ясно видно, что чем больше выходное (внутреннее) сопротивление источника, тем ощутимее будет меняться напряжение в зависимости от тока нагрузки (рис.1)

Известно, что при падении анодного напряжения возрастают нелинейные искажения. При возрастании выходной мощности, возрастает и потребляемый ток, и, следовательно, просадка в выходном сопротивлении БП. Следовательно этот эффект будет умножаться. Также следует отметить качество выпрямления и требования к сглаживанию (Рис.2).

В вариантах а и б требуются конденсаторы большей емкости и дроссели с большим количеством витков.

К тому же необходим трансформатор с отводом от средней точки, так что вполне очевидно преимущество мостовой схемы.

*Время готовности выпрямителя на кенотронах больше, чем на полупроводниках. Это дает возможность остальным лампам прогреться и предотвращает подачу анодного напряжения на холодные лампы.

Кенотрон действительно опаздывает по сравнению с полупроводником. Однако, вспомним катоды выходных ламп. Мало вероятно, что 5Ц4С прогревается дольше, чем катоды, хотя бы, 5-ваттного УМЗЧ (6П1П или 6П14П). В лучшем случае они будут готовы одновременно. Я уж не говорю о более мощных выходных лампах, таких как 6П3С, 6П45С, ГУ-50 и т.д. Скорость прогрева кенотрона смехотворна, по сравнению со столь массивными катодами, особенно, если используется кенотрон прямого накала, например 5Ц3С. Подача высокого напряжения на «холодную» лампу действительно снижает срок службы, но решать эту проблему путем использования выпрямителя с неизвестным временем готовности, на мой взгляд, не обоснованно. Для решения этой задачи лучше применять термостатирование выходного каскада (довольно сложный вариант. Если это вас заинтересует, можем обсудить на форуме с участием других специалистов. Буду благодарен за вопросы и отзывы). Гораздо проще использовать обычный таймер с компаратором и триггером (Рис.3).

Данное устройство не измеряет температуру катода или анодный ток. Оно только создает выдержку включения анодного питания, пока заряжается С1. Выдержку можно подстроить путем регулировки опорного напряжения компаратора (R2) в зависимости от суммарной теплоемкости катодов. Питается таймер переменным током с обмотки накала 6,3В.

2. Расположение и компоновка ламп и прочих элементов.

*Некоторые лампы звучат лучше лежа под определенным углом к горизонту. Данное утверждение может быть справедливым применительно к лампам с особенной конструкцией электродов. Например торпотроны или другие лампы диапазона СВЧ, устроенные весьма специфично. Что же касается обычных приемно-усилительных ламп, то здесь действуют самые простые законы термодинамики. При нагревании материал расширяется, прогретые участки сеток (они представляют собой проволочные спирали, навитые на траверзах) провисают и создают межвитковые замыкания. Особенно часто это происходит между катодом и управляющей сеткой, которая располагается как можно ближе к катоду для увеличения крутизны ВАХ. Как это отразится на работе прибора – судите сами.

*Для уменьшения уровня шума, места пайки в Hi- End аппаратуре нужно покрывать инертными металлами. Для снижения уровня шума есть более эффективные и дешевые средства. Действительно, кристаллы оксидов могут создавать шум за счет микро-разрядов из-за разности потенциалов на разных участках цепи. Искушенные слушатели могут это слышать. Но если вы не олигарх, достаточно покрыть контакты и выводы лаком. Что же касается шума, то более эффективным средством борьбы является стабилизация напряжения питания. И это относится не только к питанию анода. Основной причиной шума в лампах являются флюктуации эмиссии, т.е. неравномерный выброс электронов из катода. Очевидно, что для предотвращения этого явление необходимо обеспечить равномерный прогрев катода. Так что если удерживать стабильный режим подогревателя, можно во многом улучшить шумовые параметры.

*Лампы нельзя экранировать. Данный тезис, вероятнее всего, вышел из рассуждений о тепловом режиме. Лампы, которые можно и нужно экранировать, работают в слаботочных (входных) каскадах. Действительно, вряд ли кому то придет в голову накрыть колпаком ГУ-81 или ГУ-49. Любая наводка ничтожна по сравнению с их анодным током. Чего не скажешь об «усилителе напряжения» и фазоинверторе (в 2-тактных усилителях). Наводки в каскадах с высокой чувствительностью и высокоомным входом чувствуют себя весьма вольготно. Однако следует отметить, что в процессе работы они не разогреваются до высоких температур (если, разумеется, работают в оптимальном режиме). К тому же баллон изготовлен из термостойкого стекла. Так что 100-125°С они вполне могут выдержать. Кроме защиты от наводок, экран, в какой-то степени, способствует термостатичности. Так что чем лучше экранирован вход, тем меньше проблем на выходе.

Кстати, есть лампы, у которых экран уже входит в конструкцию. У них на цоколе даже есть вывод этого экрана. Это октальные лампы в металлическом корпусе, такие как, например, 6Ж8. У них герметичный стеклянный баллон накрыт металлическим колпаком.

3. Режим питания

Не будем забывать, что кроме анода, в лампах нуждается в питании еще подогреватель. На этот счет тоже есть множество спорных мнений. Рассмотрим некоторые.

*Лучше перекалить, чем недокалить. Так считают некоторые музыканты, конструирующие гитарные «примочки». Такой прием действительно усиливает эмиссию катода, но без должного потенциала на аноде, все эти лишние электроны просто разлетаются без всякой пользы. Ничего особенного кроме сокращения срока службы это не дает. Скажу больше – при пониженном питании катод все равно разогреется до нужной температуры, только на это потребуется чуть больше времени. А вот срок службы и надежность, следовательно, всего устройства значительно увеличится. Особенно если речь идет о низковольтных (например электрометрических) лампах.

*На переменном токе подогреватель служит дольше, чем на постоянном. Весьма сомнительное утверждение. Однако со всей уверенностью можно констатировать, что цепи накала переменного тока являются сильнейшим источником наводок, поскольку проходят по всем участкам схемы. И тут уж никакая позолота контактов не спасет. Кроме того переменный ток весьма сложно стабилизировать, а что дает поддержание стабильного напряжения накала было сказано выше.

*Для получения более яркого эффекта анодное напряжение должно быть выше номинального и вообще лампа должна быть слегка перегружена. Действительно это придает звуку своеобразный оттенок за счет нелинейных искажений. Это так же сокращает срок службы. Кроме того эти искажения сложно регулировать, если только не подстраивать анодное напряжение особым регулятором (затея нелепая даже на мой взгляд). Так что лучше подобрать спокойный анодный режим и оставить в покое. Эффективнее и безопаснее экспериментировать с обратными связями, за счет которых обеспечивается эффект (фильтры, встречно-параллельные диоды и т.д.). И вообще имейте ввиду, что в основе любой примочки лежит обыкновенный усилительный каскад, который уже подогнан под оптимальный режим и ни в каком экстриме не нуждается.

*Применение электронно-световых индикаторов позволяет получить более мягкое звучание. Штука красивая, не спорю. Однако по сути это обыкновенный триод+индикатор, которым управляет анодный режим триода. Это обычная усилительная лампа, которая на фоне остальных ни чем особо не выделяется и требует поддержания оптимальных режимов работы.

Что вспомнил, рассказал. Если есть вопросы – .

С уважением Павел А. Улитин (aka ). г. Чистополь, Татарстан.

Разговоры о том, что лучше, транзисторы или лампы, ведутся с незапамятных времен. Доминирующее мнение лет эдак за двадцать пять плавно и, соответственно, незаметно меняется на противоположное. И если в начале семидесятых на транзисторных приемниках указывалось количество транзисторов, на которых этот аппарат выполнен (предполагалось, что связь количество-качество прямая), то в конце девяностых в передних панелях аппаратуры сверлят дырочки, чтобы мы могли видеть священный огонь лампы или ламп внутри ультрасовременных предварительных усилителей или звуковых процессоров, и трепетать уже от одного этого. Трепет подобного плана, в общем, дело неплохое - эмоция скорее положительная. Но за него предлагается платить дополнительные деньги и, как правило, немалые. Производители ламповой техники, естественно, пытаются укрепить в нас уверенность в том, что если аппарат ламповый, значит он непременно хорош. Делать они это пытались всегда, но на этот раз, ввиду того, что эволюционная спираль уже практически совершила полный оборот, им это, похоже, удается, и в настоящее время мы находимся на первой стадии лампового бума. Подтверждается это еще и тем, что на вопрос "Почему так дорого?" стал нормой ответ - "А что же ты хочешь, он же ламповый". Бум желательно встречать во всеоружии - с трезвой головой и ясным пониманием того, что тебе нужно. Это непросто. Если звукоинженеру с многолетним стажем работы по специальности, слышавшему большое количество как ламповой, так и транзисторной техники, повесить лапшу на уши довольно сложно, то музыкального полупрофессионала или любителя, коих большинство, сбить с толку попроще. Возможности сравнивать звучание разной аппаратуры весьма ограниченные. Информация, полученная от продавцов музыкального оборудования, сдобренная слухами (часто инспирированными компаниями-производителями), модой и пафосом, моде сопутствующим - далеко не лучшая платформа для выбора аппаратуры.

Прежде всего, надлежит разобраться в том, чем отличается ламповое звучание от транзисторного и почему. Мне представляется красивым, лаконичным и, более того, почти достаточным следующее объяснение: ну в самом деле - в транзисторе звук рождается в кристалле, а в лампе - в вакууме. Трудно придумать среды более несхожие. Так как же не разниться звучаниям? Лед и пламень! Тут я не оригинален, поскольку посвященные этой теме статьи в зарубежных журналах, часто выходят под заголовками типа: "Warm and Cool", "Hot or Cold" и т. п.

В одной из таких статей, в которой автор достаточно аргументировано доказывает превосходство лампы над транзистором по всем показателям (правда, почему-то в ней ни словом не упомянут такой немаловажный показатель звучания, как шум), приводится интересное объяснение привлекательности лампового звучания на примере использования в семидесятых классических конденсаторных микрофонов с ламповыми предусилителями. Дело оказывается в том, что эти микрофоны имеют сигнал очень высокого уровня (до 1,5 В) и предварительные усилители вынуждены практически постоянно работать с перегрузкой. При перегрузке лампы во-первых происходит естественная компрессия звука, в результате чего он воспринимается как более "плотный". Во-вторых происходит искажение звука, в результате чего он обогащается гармониками. В ламповой технике расположение этих гармоник по громкости практически совпадает с обертоновым рядом, то есть добавляются вторая (октава), третья (квинта), четвертая, пятая и т. д. гармоники, что субъективно воспринимается как приятное на слух, "музыкальное" звучание. Подобный принцип обогащения исходного сигнала гармониками применяется, например, в таком приборе, как эксайтер.

При перегрузке транзисторной техники звук также искажается, но сигнал при этом насыщается в основном нечетными гармониками, то есть третьей, пятой, седьмой, девятой и т. д. Из них седьмая и девятая гармоники - диссонирующие, что слух, мягко говоря, не ласкает и воспринимается именно так, как оно и есть - как искажения.

Поскольку звучание транзисторов и ламп серьезно отличается друг от друга, очевидно, что и варианты применения техники, построенной на столь несхожих компонентах, должны отличаться. Видимо, в каких-то случаях предпочтительней лампа, а в каких-то - транзистор. Для ответа на вопрос - для чего лучше использовать то и другое, необходимо дать общие характеристики звучания как ламповых, так и полупроводниковых звуковых приборов. Последние в дальнем зарубежье принято называть "твердотельными" (solid state).

Итак, лампа.
Плюсы: звучит тепло, при перегрузке придает звучанию дополнительную "музыкальность".
Минусы: шум (как следствие сложности с качественным усилением сигналов низкого уровня), громоздкость, малый срок службы (некоторые гитаристы вынуждены менять лампы в своих усилителях каждый месяц), плохо переносят транспортировку, низкий КПД (большая часть потребляемой ламповой техникой энергии расходуется на обогрев помещения, что может приветствоваться только зимой, да и то лишь при неработающем отоплении).

Транзисторы и прочие полупроводники.
Плюсы: корректность, неокрашенность звучания, малые шумы, компактность полупроводниковых устройств, низкое потребление энергии.
Минусы: сухое звучание, резко ухудшающееся при перегрузке.

Как мы видим, характеристики диаметрально противоположные - то, что хорошо у ламп, плохо у транзисторов, и наоборот. Особенно удачным можно считать применение ламп в режиме перегрузки, то есть там, где необходимо как раз изменить, окрасить исходный сигнал. При этом ламповое оборудование (будь то микрофонный предусилитель, компрессор или гитарный комбик) становится как бы обработкой, простейшим, (но, как оказалось, далеко не худшим) процессором эффектов. Ярким примером использования ламп в качестве утеплителя звука является прибор TL Audio Valve Interface - восьмиканальное устройство в котором есть восемь входов, восемь выходов и выключатель питания. Ни одной регулировки. А внутри находятся лампы, способные разом утеплить что-нибудь восьмиканальное, например, ADAT. Транзисторную же технику лучше использовать там, где особенно важны неокрашенность звучания, низкий уровень шума и искажений.

Вообще, мне кажется, что к "характерам" транзисторов и ламп вполне можно применять теорию полов и учитывать это при подборе аппаратуры. Лампа - явно выраженная дама. Ее звучание мягко и комфортно, она хорошо переносит перегрузки (преобразуя неблагоприятные обстоятельства в благоприятный результат) и может сделать звучание вашего недорогого динамического микрофона похожим на звучание конденсаторного микрофона с большой мембраной (женщинам свойственны преувеличения). Явное преимущество перед транзисторами лампы имеют в гитарной аппаратуре. Надо сказать, что гитаристы вообще народ весьма консервативный и, по существу, с ламп на транзисторы и не переходили или, во всяком случае, всегда предпочитали ламповое звучание. А вот в качестве студийной контрольной аппаратуры ламповую технику, видимо, использовать не стоит - тут необходим как раз бескомпромиссный, минимально окрашенный, не вводящий в заблуждение звук транзисторов. Он не выдаст желаемое за действительное - на него можно положиться. Мужской, одним словом, звук.

Возникает совершенно закономерный вопрос, а что, нельзя разве, при современном-то развитии электроники, сделать звук транзисторного прибора теплым, а лампового - достоверным? Конечно можно! И такая техника существует. Стоит она, правда, немеряно. Например, студийный ламповый референсный усилитель для наушников Tube-Tech PA 6, дающий неокрашенный звук, стоит 1999 американских долларов. Так что предлагаю не использовать-таки специальных женщин в качестве телохранителей и не менее специальных мужчин в качестве украшающих офис секретарей-референтов. Но если любители экзотики желают платить, то запретить им этого никто, естественно, не может...

Теперь о ценах. Близкие по классу полупроводниковые и ламповые приборы должны иметь сопоставимые цены. Да, сами лампы дороже, чем транзисторы, но зато ламповые устройства сильно проще и содержат на порядок меньше деталей (в том числе и этим ламповые адепты сегодня объясняют удивительное качество звучания подшефных устройств). Тем не менее, исторически сложилось так, что ламповая техника все-таки несколько дороже (существуют приятные исключения: например, весьма приличный микрофонный предусилитель ART Tube MP ценой 199$). Несколько, но не в разы, прошу иметь это ввиду, когда в разгар ламповой моды вам будут предлагать за бешеные деньги все, в чем хоть что-нибудь светится. А вообще, абсолютно необходимыми на сегодня можно признать только лампочки Ильича или устройства, их заменяющие (например, керосиновые или масляные лампы).

Некоторые компании, производящие профессиональную звуковую аппаратуру, изготавливают комбинированную лампово-полупроводниковую технику, пытаясь соединить в ней лучшие качества ламп и транзисторов, тем самым доказывая, что коня и трепетную лань можно использовать в качестве тягловой силы, если делать это с умом. В качестве примера можно привести Aphex Tubessence 107 - лампово-полупроводниковый микрофонный предусилитель, получивший в 1995 году награду TEC в номинации "дополнительное оборудование". Определенных успехов достигла и английская компания TL Audio, делающая предварительные усилители, компрессоры и эквалайзеры, в которых входные каскады полупроводниковые - на малошумящих микросхемах, а каскады, непосредственно отвечающие за компрессию или регулирование частот, выполнены на лампах. В результате чего на лампы сигнал поступает уже усиленным, что позволяет получить в целом приличное соотношение сигнал/шум. Таким образом, полупроводники обеспечивают малые шумы, а лампы занимаются именно тем, что им хорошо удается: компрессированием и утеплением звука. Идиллия, да и только.

Очень хочется верить в то, что путь к компромиссу найден и будущее за комбинированной техникой, в которой, как в счастливой семье, заживут герои этой статьи, дополняя друг друга, радуя нас с вами и радуясь сами. Тем более, что на сегодня отзывы о комбинированной аппаратуре весьма обнадеживающие.

Необходимо упомянуть еще и об аппаратуре Hi-End. Вот уж где применение ламп абсолютно оправдано, так как служит эта аппаратура исключительно для услаждения слуха и должна звучать максимально красиво. Хотя авторы аудиожурналов, по-моему, уже давно начисто перепутали два таких понятия, как красота звука и его естественность, и часто ставят знак равенства между двумя этими, далеко не всегда совпадающими, понятиями. В хайэндовом мире лампа непоколебимо сидит на троне и, поскольку нетерпимость аудиофилов скоро должна войти в поговорки, наиболее спокойной из характеристик, даваемых ими транзисторной технике, является сентенция: "Хороший транзисторный усилитель - отключенный от сети транзисторный усилитель!"

На прощание хочется повторить, что подходить к выбору аппаратуры нужно спокойно и взвешенно. Фразы типа "только лампа" или "транзистор - однозначно!" были бы забавны, если бы общаться с людьми, склонными к подобным подходам, не было бы так неприятно. Там, где начинается безапелляционность - кончается компетентность, да и спору эти люди предпочитают ругань. Так что советую вам сомневаться - слушать - читать - думать. Удачи!

HI-END- МИФЫ И РЕАЛЬНОСТЬ

В. Костин

Салон AUDIO VIDEO январь 1998

Вы читаете статью одного из старейших конструкторов ламповых усилителей. Первый промышленный образец комплекта "Валанкон" появился в продаже осенью 1991 г. Фирма, названием которой является аббревиатура от имен Валентина и Антона Костиных, была изначально нацелена на разработку и выпуск высококачественной аудио-визуальной техники. Основные усилия по совершенствованию своих усилителей конструкторы направили на совершенствование блоков питания, выходных трансформаторов и подбор пар выходных ламп.

В отличие от многих современных "ламповиков", автор считает увлечение однотактными усилителями без обратной связи абсурдным. Мы [Салон AUDIO VIDEO] решили внести свою лепту в разрешение основного вопроса философии High End Audio, а, может, еще больше запутать его.

Ох уж этот High End! Столько "капусты" сгнило, столько "лапши" приготовили, что и ушей тех не видно, на которые ее повесили! Как говорил один наш покупатель, продавая за 1500 долларов очередное "чудо", купленное за 4500: "Наука стоит денег, за все надо платить". А надо ли, или High End - это вновь открытый континент, где свои физические законы, где закон Ома для тока, текущего в одну сторону проводника, один, а в обратную - другой, где подложенные под шипы аппарата медные монеты звучат лучше, чем никелевые? При такой постановке вопроса говорить о звучании усилителя абсурдно, и можно судить только о качестве звука этих самых монет. Как будто в школе не учились, а об институте уж и говорить не приходится. Так что, High End действительно познается только на эзотерическом уровне, или всему есть рациональное объяснение?

Чтобы понять это, постараемся ответить на четыре ключевых для данной проблемы вопроса: Как оценить то, что мы слышим? Как и что мы слышим? Как и что мы делаем? Как выбирать? То, с какой точностью мы на них ответим, и определит правдивость полученного ответа.

В зависимости от назначения звуковоспроизводящей аппаратуры критерии качества звучания будут различными, однако результат его восприятия - одобрительно-неодобрительное оценочное суждение. При таком подходе возникает одна из основных психологических задач оценки качества звучания: изучение структуры положительных суждений, соответствующих тем или иным критериям оценки. Такие мнения, возникающие у слушателей, могут относиться как к непосредственному воздействию звука на эмоциональную сферу, так и к точности его воспроизведения, которая, в свою очередь, может порождать вторичные эмоции.

Степень качества или его величина определяется двумя основными методами:

Находится сходство, с которым воспроизведенный звук приближается к исходному натуральному, оцениваемым экспертом, то есть натренированным слушателем, способным воспринимать даже мельчайшие различия в сравниваемых образцах звуков. Если разницы нет, то воспроизведение идеально. Окончательным судьей, таким образом, является человеческий слух, используемый как самый чувствительный из всех измерительных приборов. Однако по целому ряду причин невозможно обеспечить прямые сравнения между натуральными звуками и их воспроизведенным аналогом;

Находится сходство, с которым воспроизведенный звук приближается к имеющимся у каждого человека соответствующим эталонам оценки.

Критерием оценки качества звука, воспроизводимого аппаратурой, принято считать эмоциональные реакции. То, как слушатель реагирует на звук, зависит от соотношения желаний и возникших впоследствии ощущений. Вначале определяют взаимосвязь между физическими характеристиками воспроизводящей системы и полнотой чувств, затем эта взаимосвязь сопоставляется с глубиной эмоций, и в результате устанавливается соотношение между ней и физическими характеристиками.

Установление подобных соотношений и является основной задачей в процессе оценки качества звучания. Трудность заключается в том, что различия в чувственном восприятии не выражаются физически в явной форме и основные качества звука отдельно не воспринимаются. Конечное эмоциональное впечатление определяется неким "вектором" в многомерной системе координат.

Обозначив основные факторы, влияющие на оценку качества звучания, рассмотрим, из чего же состоит само понятие качества звучания. Проверяя алгеброй гармонию, можно вывести простую формулу:

Q = F(S, T, L), где: Q - качество звучания; S - качество источника сигнала; Т - качество канала передачи; L - особенности индивидуального слухового восприятия.

В современной психофизике нет однозначного определения ни одного из приведенных понятий, так может быть в этом наше счастье? Иначе бел бы один усилитель, одни акустические системы, один источник и т. д., но все-таки попрооуем эти определения дать.

Качество источника звука некоторые авторы связывают с классификацией музыки по жанрам ("классика", "легкая популярная" и т. д.), другие - по типу (мелодичная, ритмичная и т.д.). Окончательное решение этих вопросов связано с необходимостью формального представления динамического музыкального строения и обнаружением зависимостей между свойствами структуры и доминирующими чувствами, возникающими при прослушивании музыки с теми или иными особенностями динамической структуры.

Качество канала передачи, на первый взгляд, определяется достаточно простыми и понятными параметрами: средняя мощность, пиковая мощность, демпфинг-фактор, полоса частот, коэффициенты искажений и т. д., однако какие искажения измерять, как измерять и сколько, - достаточно уверенно не может сказать никто. Некоторые свойства канала передачи вообще не описываются никоим образом, кроме как общими определениями.

Индивидуальные различия в восприятии качества звучания представляются третьим параметром, но результаты его исследований наиболее скудны. Некоторые предлагают классифицировать слушателей по возрасту, полу, образованию и профессии. Другие считают данную проблему основной, поскольку результаты для случайной группы не позволяют обнаружить сколько-нибудь заметных закономерностей, лежащих в основе оценки слушателями качества звучания аппаратуры. Единственным достоверным результатом является тот факт, что слушатели обычно делятся на две группы: одна предпочитает то, что другая не одобряет.

Так где же выход, спросите вы. Во всяком случае, он не столь очевиден, как может показаться из статей нынешних журналов. Как уже было сказано, он заключается в поиске некоторого "эмоционального вектора", и все, что написано выше, имеет только одну цель - показать, насколько это сложная задача.

В настоящее время существует достаточно хорошо разработанный метод многомерного шкалирования, позволяющий со значительной степенью вероятности определить положение "эмоционального вектора". В своем классическом варианте это достаточно сложное сооружение с развитым математическим аппаратом, точность которого возрастает пропорционально объему проведенных тестов. В общих чертах суть метода можно понять из приведенного ниже примера.

Представим себе темную комнату, в которой находится нечто, нам всем неизвестное и гораздо большее, чем мы можем охватить двумя руками. Нам предлагается по очереди заходить в эту комнату с разных сторон на определенное и для всех одинаковое время и, пощупав, понюхав и т.д. там это "нечто", выйти из помещения и ответить на ряд одинаковых вопросов. После этого собранная информация обрабатывается, и строится ряд метрических шкал, которые с одной стороны определяются нашими ожиданиями того, что там находится, а с другой - описанием этого "нечто". Совпадение и несовпадение эти двух, можно сказать, поверхностей и дает представление о находящемся в комнате предмете.

Для дальнейшего упрощения представим, что в темной комнате стоит экскаватор, а люди, которых мы туда посылаем, его никогда не видели. По описаниям тех, кто на ощупь ознакомился с отдельными частями машины, нам необходимо понять, что там находится. Ничего себе задачка!

Вот в общих чертах тот спектр проблем, связанных с задачей оценки качества звучания как ее видит психофизика.

Следующая проблема, связанная с процессами слухового восприятия, настолько сложна, что мы ограничимся только несколькими примерами из этой области знаний.

Возьмем чистый тон частотой 1000 Гц какой-либо громкости и другой, например 200 Гц, и, меняя громкость второго тона, сделаем так, чтобы наше ощущение громкости первого и второго тонов были равны. Проведя подобные измерения на разных частотах и разных уровнях, мы получим кривые равной громкости (Рис.1). Какие выводы можно сделать из этих кривых?

1. Наибольшая чувствительность нашего слуха находится в области частот 1 - 5 кГц, понижаясь как в область высоких, так и в область низких частот. Особенно сильно чувствительность нашего слуха падает в области низких частот на малых уровнях громкости.

2. Частотная характеристика нашего слуха становится равномерной только при уровне громкости 90 Фон. Это эквивалентно шуму электрички на расстоянии 6 - 8 м или шуму в поезде метро во время движения.

3. Уровень 120 Фон считается болевым порогом - он равен уровню шума авиационного мотора на расстоянии 5 м.

Для большей ясности приведем уровни громкости, встречающиеся там, где мы слушаем нашу музыку, то есть дома. В тихой комнате он составляет 25-30 Фон, при спокойном разговоре трех человек в обычном помещении - 45-50 Фон, при шепоте средней громкости на расстоянии 0,5 м - 20 Фон.

Из приведенного выше материала мы получаем следующие рекомендации:

Средний уровень громкости прослушивания составляет 45 - 50 Фон, что эквивалентно мощности усилителя порядка 1 Вт при чувствительности акустических систем порядка 86 - 89 дБ;

Если учесть, что реальный динамический диапазон источника сигнала порядка 70 дБ, то для тихой комнаты это составит в пиках 95 - 100 Фон, что при среднем уровне 45 - 50 Фон потребует мощность усилителя порядка 100-150 Вт;

При том же среднем уровне 45 - 50 Фон мы имеем падение чувствительности нашего слуха на низких частотах на 30 - 40 дБ, а на высоких 10-20 дБ. Субъективно мы ощутим недостаток низких и высоких частот.

Выход из затруднения очень прост и давно известен: необходима частотная коррекция или попросту регуляторы тембра. "Но как же так? - воскликнут адепты High End. - Прикасаться к звуку, а тем более править его запрещено: внесем искажения!". Это одна из самых стойких легенд, и вот сотни фанатов сидят и слушают ограниченный сигнал (не только частотно, но об этом ниже), получая свою долю сомнительного удовольствия. Прямо атака различных меньшинств (звуковых, сексуальных и т.д.) на нормальных людей. Но доля правды в их словах, конечно, есть и две причины этого лежат на поверхности: - лет 15-20 назад о проблемах, которые мы сейчас обсуждаем, никто и не задумывался, задача стояла другая: получить максимальные диапазоны регулировки тембра. Именно из-за этого и были упущены субъективные критерии - все гнались за децибелами, процентами, скоростями; - зачем ломать голову, проводить исследования, разрабатывать специальные регуляторы тембра, когда можно придумать понятную всем красивую легенду и за приверженность к этой легенде обложить нас многотысячным (не в рублях) оброком?

Да, действительно, искажения есть, и чем дальше от источника, тем больше, даже в зале Консерватории, где искажения пока еще отсутствуют, мой коллега любит сидеть с 10 по 15 ряд партера, а я - на первом ряду балкона: у каждого своя комфортная зона.

Пошли дальше по пути искажений. Вот лежит передо мной тот самый легендарный микрофон Neumann - 67. Его вид изнутри повергнет в шок любого адепта: электролитический конденсатор в цепи звука, море керамических конденсаторов, простые медные провода, трансформатор с толстыми листами пермаллоя и обмоткой опять же из обычного медного провода. Все это выпуска 50 - 60 годов. Где серебро, где фторопласт или полипропилен? Далее идет несколько сот метров кабеля, пульт и аналоговый магнитофон, в котором сразу три регулятора тембра: один по высоким частотам в усилителе записи и два по высоким и низким в усилителе воспроизведения с величиной коррекции +20 дБ, а не 10, как в регуляторах тембра.

Посмотрим на виниловый диск: и здесь двойная коррекция - одна при записи, другая - при воспроизведении с полной величиной 40 дБ. Вот вам и неприкосновенный звук. Легенды, легенды, легенды...

Перейдем теперь к тем устройствам, вокруг которых и родилось это множество мифов, претендующих на истину в последней инстанции, хотя сами устройства и являются последними, но в длинной цепи.

Как хорошо известно, есть две версии усилителей мощности: однотактные и двухтактные. Они могут строиться как на триодах, так и на тетродах и пентодах.

Оба типа могут использовать и не использовать отрицательную обратную связь (ООС). В общих чертах потенциальные преимущества и недостатки этих двух версий заключаются в следующем.

Однотактные:

Более адекватный субъективному восприятию спектр гармоник (плавно спадающий с отсутствием высших гармоник);

Более простая конструкция и схемотехника;

Более прозрачный и детальный высокочастотный регистр (лучшая детализация музыкального образа без смазывания отдельных нот, особенно заметная на оркестровых и хоровых фрагментах);

Низкий кпд, реально 15 - 20% и, как следствие, малая выходная мощность;

Высокие требования к источнику питания, на порядок более высокие требования по пульсациям питающего напряжения по сравнению с двухтактными усилителями;

Сложность получения низшей рабочей частоты порядка 30 Гц при сопротивлении анодной нагрузки более 2-3 кОм, так как из-за наличия постоянного подмагничивания в сердечнике трансформатора происходит падение магнитной проницаемости материала сердечника.

Это мы и слышим даже на очень дорогих усилителях. Обычно выходная мощность составляет 10 - 15 Вт, и присутствует "рыхлый", с отсутствием динамики бас.

Двухтактные:

Мощный, хорошо проработанный низкочастотный регистр, так как отсутствует постоянное подмагничивание;

Высокий кпд, как следствие, высокая выходная мощность;

Меньшие требования к источнику питания по пульсациям выпрямленного напряжения;

Более простой выходной трансформатор;

Худшая проработка высокочастотного регистра. Так как сигнал усиливается двумя лампами и складывается в нагрузке, то возникающие временные ошибки, вызванные несовпадением времени прохождения сигналов, и ошибки, вызванные несовпадением характеристик выходных ламп, приводят к искажениям;

Более сложная схемотехника.

Следующим вопросом, касающимся усилителя, является использование в нем отрицательной обратной связи. Ее отсутствие приводит к следующим последствиям:

Высокочастотный регистр становится более прозрачным и детальным;

К топологии монтажа и источнику питания предъявляются более жесткие требования;

Более жесткие требования также к схемотехнике и комплектующим изделиям;

Стабильность характеристик становится меньшей из-за того, что изменения параметров ламп за время эксплуатации не компенсируются;

Ослабленный с меньшей динамикой низкочастотный регистр из-за большего выходного сопротивления усилителя и худшего демпфирования громкоговорителя.

Преимущества, связанные с применением ООС:

Менее жесткие требования к топологии монтажа и источнику питания, а также стабильности параметров активных и пассивных элементов;

Меньшее выходное сопротивление усилителя и, как следствие, лучшее демпфирование громкоговорителей.

Использование в выходном каскаде триода или тетрода (пентода) в значительной степени определяет потенциальные возможности усилителя:

Применение триода ведет за собой потенциально большую линейность, меньшее внутреннее сопротивление, меньшее усиление, меньшую выходную мощность из-за худшего использования анодного напряжения и, как следствие, худшую динамику низкочастотного регистра;

В случае применения тетрода, пентода мы получим обратную картину.

Прослушивание различных усилителей и большой опыт их производства позволяет сделать один интересный вывод: по своему звучанию лампы более индивидуальны, чем транзисторы. В транзисторных усилителях в большей степени "звучит" конструкция и схемотехника, и если мы возьмем два разных транзистора с примерно одинаковыми параметрами, то в одном и том же усилителе они будут звучать одинаково. С лампами картина несколько иная, проиллюстрируем это следующим примером. Возьмем однотактный усилитель в классе А, использующий EL-34 в триодном включении без ООС, и снимем спектр гармоник (искажений) при одинаковой выходной мощности (1 Вт), первая гармоника принята за 0 Дб.

Через 2 минуты после включения:

0 -45 -50 -60 -52 -70 -70 -76 -74 -74

Через 30 минут после включения:

Две лампы одного производителя:

Две лампы другого производителя:

Приведенный спектр гармоник и определяет индивидуальность звучания усилителей на электронных лампах.

Выбор класса работы усилителя, пожалуй, самый простой вопрос: чем ближе к классу А, тем меньше искажения и лучше звучание, но возникают проблемы с отводом тепла.

Главное - слушать вам, и поэтому больше верьте себе, своему слуху, а не мифам. Походите по магазинам и попробуйте различную аппаратуру, последуйте совету легендарного Одиссея: не слушайте сладкоголосых сирен. А лучше сходите в консерваторию 2-3 раза с небольшим перерывом и после идите и делайте окончательный выбор. При этом используйте свой CD, но не "болгарско-китайский".

На что следует обратить внимание при покупке аппарата:

1. Достоверность и натуральность тембров: нет усилителей специально для классики и специально для поп-музыки. Если аппарат достоверно передает богатство тембров симфонического оркестра, то со всем остальным проблем не будет. Очень хорошо слушать хор - чем лучше усилитель, тем большее количество участников вы слышите.

2. Разрешающая способность - это способность усилителя воспроизвести раздельно наиболее тонкие нюансы музыкального произведения. Особенно хорошо это слышно в высокочастотном регистре: чем большее количество звуков и их изменений вы слышите, тем лучше.

3. Динамические характеристики - это способность усилителя передать атаку. Большинство отечественных и импортных ламповых аппаратов проигрывают по этому параметру транзисторным. Особенно внимательно надо следить за тем, чтобы в момент прохождения через усилитель мощной низкочастотной атаки не разрушалась структура высокочастотного регистра.

4. Способность усилителя справляться с низкочастотным регистром. Она определяется не только возможностью воспроизведения самых низких частот, но и тем, насколько достоверно передается фактура спада низкочастотного сигнала. Даже в лучших транзисторных усилителях спад низкочастотного сигнала смазан и идет просто "гудеж".

5. Чем меньше фазовые искажения в усилителе, тем в меньшей степени звук привязан к акустическим системам, тем более целостзвук не должен исходить из акустических систем - нужно, чтобы "звучало" пространство, и колонки должны определяться только визуально.

6. Если применение сетевых фильтров, изменение полярности сетевой вилки влияет на качество звучания, то это означает, что в усилителе некачественно изготовленный блок питания, а если разработчики не смогли грамотно выполнить блок питания, то как они могут сделать хороший усилитель?

7. Не принимайте всерьез фразы вроде: " ...а вот на других акустических системах..." Если колонки не самые простые, то разницу в усилителях слышно, и чем лучше усилитель, тем более безразличен он к акустике.

Прежде чем закончить наш краткий экскурс в "легендарную" область High End, хочется еще раз напомнить, что приведенные здесь сведения относительно особенностей усилителей определяют только потенциальные возможности, а не свойства конкретных моделей. Но если проинтегрировать наш опыт разработки и производства ламповых усилителей, то получается следующая картина:

Однотактные усилители всегда окрашивают звук, делая его более "приглаженным и сладковатым": мы как бы кушаем конфетку "апельсин", забывая вкус настоящего апельсина;

Двухтактные усилители при грамотном исполнении более нейтральны, лучше передают весь частотный диапазон, макро- и микродинамику.