Приём вкр для публикации в эбс спбгэту "лэти". Метод повышения эффективности рлс для обнаружения людей за оптически непрозрачными преградами Генерирование РИ с ФКМ

ФКМ радиоимпульсы характеризуются скачкообразным изменением фазы внутри импульса по определенному закону, например (рис. 1.66):

– код трехэлементного сигнала

– закон изменения фазы

или семиэлементный сигнал (рис. 1.67):

Таким образом, можно сделать выводы:

· АЧС сигналов с ЛЧМ является сплошным.

· Огибающая АЧС определяется формой огибающей сигнала.

· Максимальное значение АЧС определяется энергией сигнала, которая в свою очередь, прямопропорциональна амплитуде и длительности сигнала.

· Ширина спектра равна где девиация частоты и не зависит от длительности сигнала.

· База сигнала (коэффициент широкополостности) может быть n >>1. Поэтому ЛЧМ сигналы называют широкополосными.

ФКМ радиоимпульсы длительностью представляют собой совокупность следующих друг за другом без интервалов элементарных радиоимпульсов, длительность каждого из них одинакова и равна . Амплитуды и частоты элементарных импульсов одинаковы, а начальные фазы могут отличаться на (или какое-либо другое значение). Закон (код) чередования начальных фаз определяется назначением сигнала. Для ФКМ радиоимпульсов, используемых в радиолокации разработаны соответствующие коды, например:

1, +1, -1 - трехэлементные коды

- два варианта четырехэлементного кода

1 +1 +1, -1, -1, +1, -2 - семиэлементный код

Спектральную плотность кодированных импульсов определяют, используя свойство аддитивности преобразований Фурье, в виде суммы спектральных плотностей элементарных радиоимпульсов.

В настоящее время остаются актуальными в радиолокации задача разрешения, а в системах передачи информации - задача различения сигналов.

Для решения этих задач можно использовать ФКМ сигналы, кодированные ансамблями ортогональных функций, имеющих, как известно, нулевую взаимную корреляцию.

Для разрешения сигналов в радиолокации можно использовать пачечный сигнал, каждый импульс которого кодирован одной из строк ортогональной матрицы, например матрицы Виленкина-Крестенсона или Уолша-Адамара. Данные сигналы имеют хорошие корреляционные характеристики, что позволяет использовать их для вышеупомянутых задач. Для различения сигналов в системах передачи данных можно использовать такой же сигнал со скважностью равной единице.

Матрицу Виленкина-Крестенсона при этом можно использовать для формирования полифазного (p -фазного) ФКМ сигнала, а матрицу Уолша-Адамара, как частный случай матрицы Виленкина-Крестенсона для числа фаз равного двум, - для формирования бифазного сигнала.

Полифазные сигналы, как известно, обладают высокой помехоустойчивостью, структурной скрытностью и относительно малым уровнем боковых лепестков автокорреляционной функции. Однако для обработки таких сигналов необходимо затрачивать большее количество алгебраических операций сложения и умножения из-за наличия реальной и мнимой частей отсчетов сигнала, что приводит к увеличению времени обработки.

Задачи различения и разрешения могут усугубляться априорно неизвестным доплеровским смещением несущей частоты из-за относительного движения источника информации и абонента или РЛС и цели, что также затрудняет обработку сигналов в реальном масштабе времени из-за наличия дополнительных доплеровских каналов обработки.

Для обработки вышеупомянутых сигналов, имеющих доплеровскую добавку частоты, предлагается использовать устройство, которое состоит из входного регистра, процессора дискретного преобразования, блока перекрестных связей и набора одинаковых блоков формирования АКФ сигнала, представляющих собой последовательно соединенные регистры сдвига.

Если в качестве матрицы-базиса взять ортогональную матрицу Виленкина-Крестенсона для обработки полифазного пачечного сигнала, то дискретное преобразование перейдет в дискретное преобразование Виленкина-Крестенсона-Фурье.

Т.к. матрицу Виленкина-Крестенсона можно факторизировать с помощью алгоритма Гуда, то дискретное преобразование Виленкина-Крестенсона-Фурье можно свести к быстрому преобразованию Виленкина-Крестенсона-Фурье.

Если в качестве матрицы-базиса взять ортогональную матрицу Уолша-Адамара - частный случай матрицы Виленкина-Крестенсона для обработки бифазного пачечного сигнала, то дискретное преобразование перейдет в дискретное преобразование Уолша-Фурье, которое путем факторизации можно свести к быстрому преобразованию Уолша-Фурье.

ФКМ называется разделение исходного радиоимпульса на nчастей равных по длительности и соприкасающихся друг с другом. при этом соседние части могут быть смещены по фазе. Наиболее широко используется противофазная система, в которой смещение равно 0 или.

Пример РИ с ФКМ:

Рис. Код 00010

Приемник РИ с ФКМ.

Рис. Структурная схема.

ЛЗ – линия задержки, ФВ – фазовращатель, РИ – радиоимпульс.

Главная особенность рассмотренного приемника состоит в том, что центральная часть выходного радиоимпульса в nраз (n=5) короче, чем продолжительность входного радиоимпульса. Поэтому РИ с ФКМ также как и РИ с РЧМ используются для различения близко расположенных целей.

Рассмотрим следующий вопрос: какие коды позволяют создать приемник, в котором центральный радиоимпульс имеет амплитуду, в nраз превышающую амплитуду боковых радиоимпульсов (поскольку только в этом случае, можно говорить о сужении зондирующего радиоимпульсаnраз на входе радиоприемника).

РИ с ФКМ обладающее таким свойством имеют коды, которые получили название коды Баркера . Сколько известно кодов Баркера? На сегодняшний день известны коды, с номерами вплоть доn= 13:

Коды Баркера

Самостоятельно нарисовать структурную схему для n=7.

Генерирование РИ с ФКМ.

Влияние пассивных помех на обнаружение радиолокационного сигнала.

Пассивными называются помехи, возникающие в результате отражения зондирующих сигналов от объектов не являющихся целями. Могут быть естественного (облака, снег) и искусственного происхождения (маскирующие отражатели).

Физической предпосылкой, позволяющей разделить сигналы, отраженные от быстро перемещающейся цели (самолета) и медленно перемещающейся помехи (облака) является Доплеровское смещение сигнала. Например: км/ч -Гц,км/ч -Гц (смещения относительно частоты).

Оптимальный фильтр для «небелого» шума.

Пусть спектральная плотность мощности не белого шума или помехи характеризуется зависимостью . Используем преобразование данной зависимости в такую, которая уже не обладает частотной зависимостью, то есть такой, какая у белого шума. Такой преобразователь называетсяобеля’ющим фильтром . Пусть АЧХ такого фильтра будет. Тогда, должно быть. Такой выбор обусловлен выражением для полной мощности шума. Таким образом, подинтегральное выражение не будет зависеть от частоты, в отличии от белого шума. Реальные пределы интегрирования конечны. В результате отбе’леный спектр помехи можно в последующем преобразовывать также, как и в случае с белым шумом, то есть использовать ранее разработанные ОФ.

Структурная схема оптимального приемника пассивной помехи будет иметь вид.

Коэффициент передачи всего устройства будет

Выражение для частотного коэффициента передачи оптимального фильтра «небелой» помехи.

В частном случае использования белого шума .

Графический анализ коэффициента передачи.

Рис.

Оптимальный приемник мачки радиоимпульсов.

Спектр периодической последовательности радиоимпульсов является линейчатым, с характерными параметрами, изображенными на рисунке.

Рис. Спектр для бесконечной последовательности ().

Если последовательность содержит mимпульсов иm> 1, то каждая линия спектра уширяется.

Из-за эффекта Доплера спектр помехи смещен относительно спектра сигнала от цели, так что частотные составляющие одного спектра будут располагаться в промежутке между частотными составляющими другого спектра (см. рис.).

Рис.

Из рисунка следует, что убрать помеху можно с помощью многополосного фильтра, у которого полос пропускания расположены также, как и полосы спектра цели, а полосы поглощения - как полосы спектра мешающей помехи. Такой фильтр называется гребенчатым фильтром подавления (ГФП).

К широкополочным сигналом относятся и сигналы с внутриимпульсной линейной частотой модуляции (ЛЧМ). Его можно представлен в виде

где φ(t) – полная фаза.

Частота внутри импульса меняется по следующему закону

,

где Δf – девиация частоты.

Полная фаза в момент времени t получится путем интегрирования частоты:

Таким образом, полная фаза сигнала изменяется по квадратичному закону. С учетом полной фазы ЛЧМ – сигнал можно записать в следующем виде

База сигнала . Внешний вид ЛЧМ – сигнала изображен на рис.4.179.

Оптимальная обработка ЛЧМ - сигнала предполагает наличие согласованного фильтра с характеристикой, зеркальной по отношению к сигналу. Из аналоговых фильтров – это дисперсионная линия задержки, у которой время задержки зависит от частоты.

Упрощенная схема согласованного фильтра для ЛЧМ – сигнала изображена на рис.4.180.

Спектр сигнала на выходе согласованного фильтра найдем по формуле

где K(jω) –передающая функция согласованного фильтра;

S(jω) – спектр внешнего ЛЧМ – сигнала.

Внешний вид спектра S(jω) изображен на рис.4.181

где - момент появления максимума выходного сигнала;

К – константа.

Пологая модуль спектральной плотности равным постоянной величине, получим

где В – амплитуда спектральных составляющих.

В соответствии с теоремой Парсеваля

Сигнал на выходе согласованного фильтра во временной области найдем, используя преобразования Фурье спектральной плоскости

Интегрируя по положительным частотам и выделяя действующую часть получим

Таким образом, выходной импульс стал в К сж раз уже, чем входной, а его амплитуда возросла в раз.

Внешний вид импульса изображен на рис.4.172

Ширина главного лепестка по нулям равна 2/Δf, а по уровню 0,64-1/Δf. Коэффициент сжатия по этому уровню будет равен

Диаграмма неопределенности ЛЧМ – сигнала изображена на рис.4.183.

При занимаемой полосе частот ЛЧМ – сигнал лучший для разрешения по времени.

Механизм сжатия сигнала в оптимальном фильтре можно пояснить следующим образом. Оптимальный фильтр осуществляет задержку спектральных компонент на время:

(4.104)

где - средняя частота;

Девиация частоты;

Длительность импульса;

Время достижения максимума сжатого импульса.

Зависимость времени задержки от частоты (4.104) изображена на рис.4.184. Время задержки является линейно убывающей функцией частоты. Зависимость времени задержки от частоты называется дисперсией.

В момент времени t мгновенная частота сигнала на входе фильтра равна . Колебание этой частоты поступает на выход фильтра с задержкой на , т.е. в момент . Определим этот момент:

Следовательно, все спектральные составляющие сигнала (независимо от величины их частоты) задерживаются в фильтре на такое время, что поступают на его выход одновременно в момент времени . В результате арифметического сложения формируется пиковый выброс сигнала.(рис.4.185)


Форма сжатого радиоимпульса при отсутствии рассогласования по частоте определяется амплитудно-частотным спектром входного сигнала. Фазочастотный спектр, в этом случае, компенсируется фазочастотной характеристикой фильтра и не влияет на форму входного сигнала. Компенсация фазочастотного спектра сигнала является основной причиной

временного сжатия, приводя к согласованному наложению гармонических составляющих.

Обработка ФКМ – сигнала

Фазокодоманипулированный сигнал – импульсный сигнал, разбитый на параллельные импульсы, у каждого из которых своя начальная фаза (рис.4.186)

Для такого сигнала имеет место соотношение

где N –количество парциальных импульсов в сигнале;

Δf – ширина спектра сигнала.

Коды фазы обычно бинарные, но могут быть и более сложные. ФКМ – сигнал может быть представлен как пачку когерентных импульсов. Для подобной пачки оптимальный обнаружитель изображен на рис.4.187

Особенности схемы следующие:

· Задержка между соседними отводами линии, задержки должны быть равны длительности парциального импульса τ 1 ;

· В некоторые отводы линии задержки должны быть включены фазовращатели, обеспечивающие синфазное суммирование сигналов.

Структурная схема оптимального обнаружителя ФКМ – сигнала изображена на рис.4.188

На схеме обозначены: ФВ – фазовращатели; СФ – согласованный фильтр. На рис.4.189 и 4.190 изображены схемы оптимального обнаружителя и эпюры напряжений для сигнала, состоящего из трех парциальных импульсов.

Одним из основных параметров, характеризующих радиолокационную систему является коэффициент различимости, который определяется как отношение минимальной мощности сигнала на входе приемника P мин к мощности шума

Характеристики обнаружения зависят от энергии сигнала

В отличие от спектра колокольной пачки спектры прямоугольных пачек обладают другой формой лепестка, а именно .

Спектры пачек прямоугольных радиоимпульсов

· Форма арок АЧС определяется формой АЧС импульсов.

· Форма лепестков АЧС определяется формой АЧС пачки.

· Спектры пачек видеоимпульсов расположены на оси частот в окрестности нижних частот, а спектры пачек радиоимпульсов - в окрестности несущей частоты.

· Численное значение спектральной плотности пачек импульсов определяется её энергией, которая, в свою очередь, прямопропорциональна амплетуде импульсов в пачке длительности импульса и количеству импульсов в пачке К (длительности пачки) и обратнопропорциональна периоду следования импульсов

· При количестве импульсов в пачке база сигнала (коэффициент широкополостности) =

1.5.2. Сигналы с внутриимпульсной модуляцией

В теории радиолокации доказано, что для увеличения дальности действия РЛС необходимо увеличивать длительность зондирующих импульсов, а для улучшения разрешающей способности - расширять спектр этих импульсов.

Радиосигналы без внутриимпульсной модуляции (“гладкие”), применяемые в качестве зондирующих, не могут одновременно удовлетворить этим требованиям, т.к. их длительность и ширина спектра обратно пропорциональны друг другу.

Поэтому в настоящее время в радиолокации все большее применение находят зондирующие радиоимпульсы с внутриимпульсной модуляцией.

Радиоимпульс с линейной частотной модуляцией

Аналитическое выражение такого радиосигнала будет иметь вид:

где - амплитуда радиоимпульса,

Длительность импульса,

Средняя несущая частота,

скорость изменения частоты;

Закон изменения частоты.

Закон изменения частоты.

График радиосигнала с ЛЧМ и закон изменения частоты сигнала внутри импульса (изображен на рисунке 1.63 радиоимпульс с нарастающей во времени частотой) приведены на рисунке 1.63

Амплитудно-частотный спектр такого радиоимпульса имеет примерно прямоугольную форму (рис. 1.64)

Для сравнения ниже показан АЧС одиночного прямоугольного радиоимпульса без внутри-импульсной частотной модуляции. В связи с тем, что длительность радиоимпульса с ЛЧМ велика, его можно условно разбить на совокупность радиоимпульсов без ЛЧМ, частоты которых изменяются по ступенчатому закону, показанному на рисунке 1.65

Спектры каждого из радиоимпульсов без JIЧM будут находиться каждый на своей частоте: .

сигнала. Нетрудно показать, что форма АЧС будет совпадать с формой исходного сигнала.

Фазо-кодо-манипулированные импульсы (ФКМ)

ФКМ радиоимпульсы характеризуются скачкообразным изменением фазы внутри импульса по определенному закону, например (рис. 1.66):

код трехэлементного сигнала

закон изменения фазы

трехэлементный сигнал

или семиэлементный сигнал (рис. 1.67)

Таким образом, можно сделать выводы:

· АЧС сигналов с ЛЧМ является сплошным.

· Огибающая АЧС определяется формой огибающей сигнала.

· Максимальное значение АЧС определяется энергией сигнала, которая в свою очередь, прямопропорциональна амплитуде и длительности сигнала.

· Ширина спектра равна где девиация частоты и не зависит от длительности сигнала.

· База сигнала (коэффициент широкополостности) может быть n >>1. Поэтому ЛЧМ сигналы называют широкополосными.

ФКМ радиоимпульсы длительностью представляют собой совокупность следующих друг за другом без интервалов элементарных радиоимпульсов, длительность каждого из них одинакова и равна . Амплитуды и частоты элементарных импульсов одинаковы, а начальные фазы могут отличаться на (или какое-либо другое значение). Закон (код) чередования начальных фаз определяется назначением сигнала. Для ФКМ радиоимпульсов, используемых в радиолокации разработаны соответствующие коды, например:

1, +1, -1 - трехэлементные коды

- два варианта четырехэлементного кода

1 +1 +1, -1, -1, +1, -2 - семиэлементный код

Спектральную плотность кодированных импульсов определяют, используя свойство аддитивности преобразований Фурье, в виде суммы спектральных плотностей элементарных радиоимпульсов.

Графики АЧС для трехэлементного и семиэлементного импульсов приведены на рисунке 1.68

Как видно из приведенных рисунков, ширина спектра ФКМ радиосигналов определяется длительностью элементарного радиоимпульса

или .

Коэффициент широкополостности , где N -количество элементарных радиоимпульсов.

2. Анализ процессов временными методами. Общие сведения о переходных процессах в электрических цепях и классическом методе их анализа

2.1. Понятие о переходном режиме. Законы коммутации и начальные условия

Процессы в электрических цепях могут быть стационарными и нестационарными (переходными). Переходным, процессом в электрической цепи называют такой процесс, при котором токи и напряжения не являются постоянными или периодическими функциями времени. Переходные процессы могут возникать в цепях, содержащих реактивные элементы при подключении или отключении источников энергии, скачкообразном изменении схемы или параметров входящих элементов (коммутации), а также при прохождении сигналов через цепи. На схемах коммутацию обозначают в виде ключа (рис. 2.1), предполагается, что коммутация происходит мгновенно. Момент коммутации условно принимают за начало отсчета времени. В цепях, не содержащих энергоёмких элементов L и С при коммутациях переходные

процессы отсутствуют. В цепях с энергоёмкими элементами переходные процессы продолжаются некоторое время, т.к. энергия запасенная конденсатором или индуктивностью не может изменяться скачком, т.к. это потребовало бы источника энергии бесконечной мощности . В связи с этим, напряжение на конденсаторе и ток через индуктивность скачком измениться не могут. Обозначая